

Contactless QR24 Encoders with CANOPEN Interface

Manual

2 Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Contents

1 About this manual	. 4
1.1 Target groups	.4
1.2 Supporting documentation	.4
1.3 Feedback on this manual	.4
2 Notes on the product	. 5
2.1 Product identification	
2.2 Scope of delivery	
2.3 Legal requirements	
2.4 Labelling	
2.5 Manufacturer and service	
	. 0
3 For your safety	6
3.1 Intended use	
3.2 Notes on the project design/implementation, and operation of the product	
3.3 Technical advancement.	
3.4 Explanation of symbols	.7
4 Product description	
4.1 Device overview	. 7
4.2 Functional principle	. 8
4.3 Delivery condition	. 8
4.4 Display elements	. 8
4.5 Connection assignments	.9
4.6 Terminating resistor	
5 Assembly	10
6 Configuration	11
6.1 Objects 1000h – 1FFFh (communication profiles)	
6.2 Variables PDO mapping.	
6.3 Objects 2000h – 2FFFh (manufacturer specifications)	
6.4 Objects 6000h – 6FFFh (default device parameters)	
6.5 LSS services DS 305 V2.0	
6.6 Network management	39
7 Accessories (assembly accessories and position elements)	40
	42
8 Technical information	42
0 Comico	42
9 Service	43
	4.2
10 Repairs	43
11 Device returns	43
12 Disposal	43

1 About this manual

This manual describes the structure, functions, and the application of the product and will assist you in deploying the product according to its intended use. Please read this manual carefully before using the product and store the manual as long as the product is in use. Turck recommends this manual must be supplied to any future owner if sold.

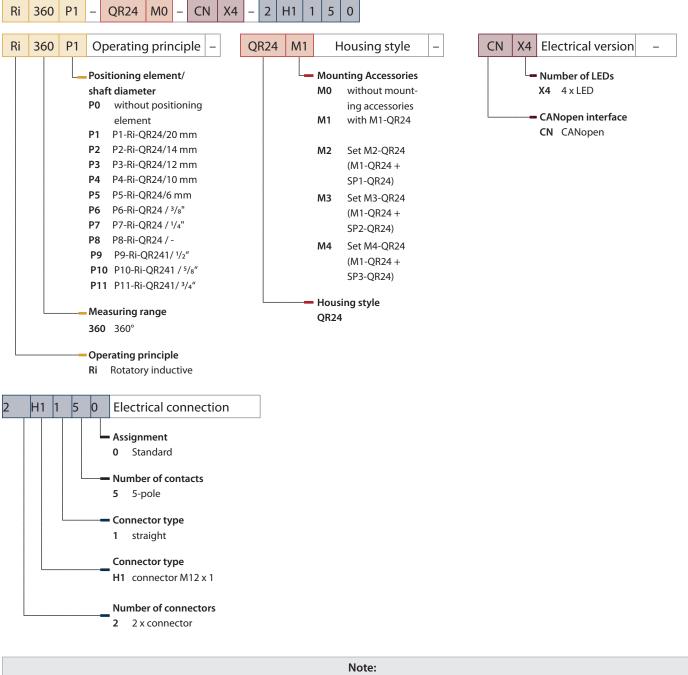
1.1 Target groups

This manual is intended for trained personnel and must be read carefully by every individual involved in the assembly, commissioning, operation, maintenance, disassembly and disposal of the device.

1.2 Supporting documentation

You will find the following supporting documentation in addition to this document online at www.turck.com:

- Data sheet
- Catalog Pages


1.3 Feedback on this manual

We aim to keep this manual as informative and clear as possible. Please send any suggestions to tusa.marketing@turck.com if you feel there is information missing or if you have ideas on how to improve the layout.

2. Notes on the product

2.1 Product identification (type key)

The sensor, the assembly elements, and the positioning element can be ordered as a set or individually.

2.2 Scope of delivery

The following items are included in the scope of delivery:

- Contactless QR24 encoder
- Assembly aid (MT-QR24)
- Short instructions
- VZ 3 screw plug

2.3 Legal requirements

The device is subject to the following EU directives:

- 2006/95/EC (Low voltage),
- · 2004/108/EC (Electromagnetic compatibility),
- 2011/65/EU (RoHS)

2.4 Labelling

The device described in this manual complies with CE requirements in accordance with the EU directive 765/2008, and satisfies the requirements laid out in the harmonisation legislation of the European Community with regards to its application.

2.5 Manufacturer and service

TURCK offers support for your project from initial analysis to the commissioning of your application. The TURCK product database contains software tools fore the programming, configuration, commissioning, data sheets, and CAD data in various export formats. The following URL will take you directly to the product database: turck.com

Our sales and service team in Germany can be reached via the following numbers if you have any questions:Sales:+49 208 4952-380Technology:+49 208 4952-390

Please contact your regional Turck representative for international enquiries.

Hans Turck GmbH & Co. KG 45466 Mülheim an der Ruhr Germany

3 For your safety

The product is designed in accordance with the state of technology. There are, however, residual risks. Please comply with the safety and warning notices to prevent injuries and damage to property. TURCK does not accept liability for damages caused by non-compliance with safety and warning notices.

3.1 Intended use

The device is intended for use in mobile machinery in industrial applications. Any other use shall be deemed improper and can result in injuries or damage to property. TURCK does not accept liability for damages caused by improper use of the the device.

3.2 Notes on the project design/implementation, and operation of the product

Compliance with the safety and accident prevention requirements applicable for the relevant use case scenario is mandatory. The device may pose hazards when used improperly or not in accordance with its intended use.

3.3 Technical advancement

Hans Turck GmbH & Co. KG reserves the right to implement technical changes or modifications to details in line with technical advancements without prior notification. This will apply to the electrical device and to the user information/operating manual, as well as any other documentation provided by Hans Turck GmbH & Co. KG.

3.4 Explanation of symbols

The following symbols are used in this manual:

WARNING:

Warning denotes a possibly hazardous situation with medium risk which could result in fatality or severe injury if not prevented.

Notes:

In connection with WARNING, you will find tips, recommendations, and important information. These notes will simplify your work, contain information about specific steps to be taken, and help prevent additional work due to incorrect procedures.

4 Product description

The encoder measures turning angles across a 360° angle range. All parameters are stored in the internal parameter memory.

Features:

- 360° angle sensor
- · High resolution and accuracy
- · CANopen interface in compliance with CiA DS-301, device profile CiA 406 3.1
- Baud rates between 10 kbps and 1 Mbps
- Sampling rate of typ. 1 kHz
- Functions:
 - One TPDO (RTR, cyclic, event-controlled, synchronized)
 - SYNC consumer (synchronized transmission of TPDO after receipt of SYNC message)
 - Failure monitoring via heartbeat or node-guarding/life-guarding
 - Freely configurable limit frequency (digital filter)
 - Robust, easy to assemble plastic housing
 - Suitable for industrial applications
 - Temperature range: -25...+85°C
 - Housing protection type: IP68/IP69K

4.1 Device overview

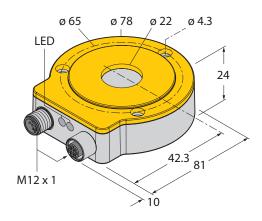
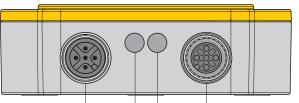


Fig.1: Device view

4.2. Functional principle


The principle of the encoder is based on the inductive RLC coupling which offers significant advantages in comparison with optical or magnetic principles. The sensor contains emitter and receiver systems in the form of PCB coils. The emitter coils are energized in a high frequency alternating field and create an inductive RLC coupling in conjunction with the positioning element (resonator). As a result, the positioning element is also inductively coupled with the receiver coils to pinpoint its exact position.

4.3 Delivery condition

At the time of delivery, the sensor comes with the following basic default settings:

- Node ID: 0x03
- Baud rate 125 kHz
- Internal terminating resistor deactivated
- TPDO1 event time: 100 ms
- TPDO1 activated
- TPDO asynchronous mode

4.4. Display elements

CAN-IN ERR/RUN PWR/SIG CAN-OUT

Fig. 2: LED arrangement

The encoder comes with an LED status display for the following states:

PWR LED

Colour/Status	Status	Description
OFF	No operating voltage	The device is not ready
Green	Operating voltage OK	The device is ready

Note:

The PWR LED will respond at as little as 5 V and is therefore not an indicator for having reached the operating voltage of 10...30 V.

RUN LED

Colour/Status	Status	Description
Green flashing	LSS status	The device is in LSS operation (intermittently flashing Error LED)
On short green flash	Stopped	Data transfer was stopped
Green flashing	Pre-operational	The data transfer is in preparation
Green	Operational	The device is ready

SIG LED

Colour/Status	Status	Description
OFF	Data signal OK	The device is functioning correctly.
Yellow	Data signal is weak but valid.	The device is working with reduced accuracy.
Green	No data signal	The device is not functioning

Error LED (ERR)

Colour/Status	Status	Description
OFF	No error	The device is functioning correctly
Red flashing	LSS status	The device is in LSS operation (intermittently flashing RUN LED)
Two short red flashes	Guard event occurrence	A guard event (NMT slave or master) or heartbeat event has occurred
Three short flashes	SYNC error	The SYNC message was not received within the preconfigured cycle time (see also object 0x1006)
Red	Bus deactivated	The CAN controller was deactivated by the bus

4.5. Connection assignment

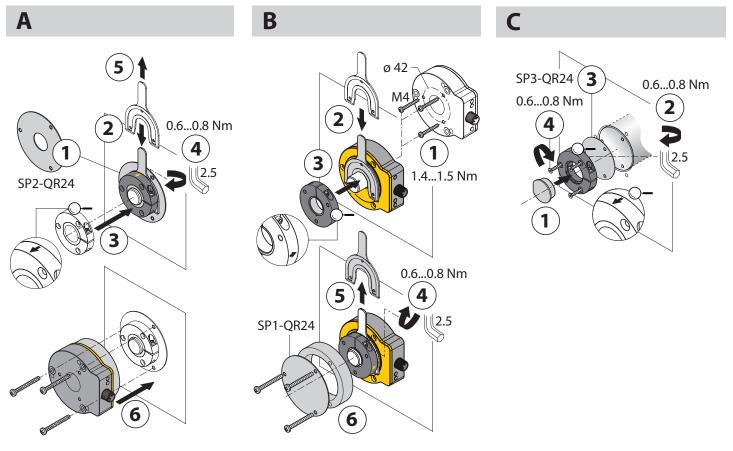
The sensor comes equipped with a CAN input connection and a CAN output connection in accordance with CiA DR-303-1.

Wiring Diagram

CAN-IN 2	Pin	Signal	Assignment
3 • • 1	1	CAN_SHLD	Shield
4 5	2	CAN_V+	Supply voltage (+24 VDC)
CAN-OUT	3	CAN_GND	GND/0 V/V-
	4	CAN_H	CAN_H bus line
5 4	5	CAN-L	CAN_L bus line

4.6 Terminating resistor

An integrated terminating resistor can be activated as needed. (See object **0x2102**).


5 Assembly

An extensive range of assembly accessories (see chapter 6) allows the easy installation to many different shaft diameters. The shield plates SP1-QR24, SP2-QR24 or SP3-QR24 can be used (depending on assembly type) to increase the permissible distance between the positioning element and the sensor. The illustrations below show the simple design of the separate sensor and resonator units, making them virtually resistant to errors. The assembly can be done as types **A**, **B**, and **C**.

Warning:

The positioning element is prone to detaching from its mounting position if assembled incorrectly. **Danger possible if parts** disassemble while in use!

- Assembly instructions must be complied with
- Ensure the correct attachment of the positioning element, tightening torque: M = 0.6...0.8 Nm

① Optional shield plate SP2-QR24 can be inserted.

(2) Attach assembly aid for optimised alignment of the positioning element.
(3) Slide the positioning element onto the rotatable shaft; ensure correct directionality of the active surface (see inscription on the side of the positioning element).

(4) Affix the clamping bracket using a hex key.

(5) Remove the assembly aid.

(6) Place the encoder with the aluminium ring over the positioning element, and affix with three screws, to create a closed, and protected unit.

① Slide the encoder on the back of the shaft and affix.

(2) Attach assembly aid for optimised alignment of the positioning element.
(3) Slide the positioning element onto the rotatable shaft; ensure correct directionality of the active surface (see inscription on the side of the positioning element).

(4) Affix the clamping bracket using a hex key.

(5) Remove the assembly aid.

⁽⁶⁾ The protective aluminium unit and the shield plate SP1-QR24 can optionally be added.

Proceed as follows if the positioning element is screwed onto a rotating machine part

and not onto a shaft:

1 Insert the blind plug RA8-QR24.

(2) Affix the clamping bracket using a hex key.

(3) Insert the optional SP3-QR24 shield plate.

(4) Affix the positioning element using three sunken head screws, ensuring the correct directionality of the active surface (see inscription on the side of the positioning element).

Mount the encoder depending on application requirement.

6 Configuration

The wear-resistant encoder with CANopen interface is ideally suited for use in mobile machinery and industrial applications. Short latencies and cyclic, event-controlled communication are only two of the many advantages of the CANopen protocol, which is often used in this area of application. A particular highlight is the software-controlled, bus-activated terminating resistor.

6.1 Objects 1000h - 1FFFh (communication profiles)

6.1.1 Object 1000h: Device type

This object specifies the device type.

1000h	VAR		Device type	Unsigned 32	RO		Μ
Device profile number	er		Encoder type				
Byte 0 (LSB)		Byte 1	Byte 2			Byte 3 (MS	SB)
96h*		01h*	01h (absolute enc	oder single-turn)			
			02h (absolute enc	oder multi-turn)		00h	

*196h = 406 decimal (encoder profile)

Example: 0001 0196h = profile DS406, absolute encoder single-turn

6.1.2 Object 1001h: Error Register

This register displays occurring device errors.

1001hVARError registerUnsigned 8ROM	100111		Error register	Unsigned 8		Μ
-------------------------------------	--------	--	----------------	------------	--	---

Bit 0 = 0: no error

Bit 0 = 1: Error "No RLC coupling" (actuator not in range) Bit 1...7: free

6.1.3 Object 1002h: Manufacturer status register

This register stores various error bits and the current status of the set limit values from object 6400h. The limit values are additionally stored in object 6401h and object 6402h.

1002hVARManufacturer status registerUnsigned 32RO	Μ
---	---

Data content object 1002h :

Bit 0 =1: EEPROM error

Bit 1 =1: No RLC coupling (no resonator in range, no angle calculation possible)

Bit 2 =1: Minor RLC coupling (poss. increased non-linearity)

Bit 3...7: free (0)

Bit 8 =1: Operating range 1 out of range

Bit 9 =1: Operating range 1 underrun

Bit 10 =1: Operating range 1 underrun

Bit 11 =1: Operating range 2 out of range

Bit 12 =1: Operating range 2 underrun

Bit 13 =1: Operating range 2 underrun

6.1.4 Object 1005h: COB ID SYNC (COB ID for SYNC message)

The object defines the COB ID for the SYNC message. The object furthermore specifies, whether the device is a generator or receiver of SYNC objects.

1005h VAR COB ID SYNC	Unsigned 32	RW	0
-----------------------	-------------	----	---

Data content:

Bit 0...10: 11 bit identifier; default ID = 80h

Bit 11...29: 0 (reserved for 29-bit identifier devices) Bit 30: 0 (device does not generate SYNC messages)

Bit 31: 1 (device is receiver for SYNC messages)

6.1.5 Object 1008h: Manufacturer device name

Contains the manufacturer's device name.

1008h VAR Manufacturer device name Vis string RO	0
--	---

Example:

RI360P0-QR24M0-CNX4-2H1150

6.1.6 Object 1009h: Manufacturer hardware version

Contains the manufacturer's version number.

1009h VAR Manufacturer hardware version Vis string RO	0
---	---

Data content:

e.g. "HW-12718801 -" in ASCII code Hardware version (127xxxxx) incl. change index (-, A, B...)

6.1.7 Object 100Ah: Manufacturer software version

Contains the manufacturer's software version number.

100Ah VAR Manufacturer software version	Vis string	RO	0	
---	------------	----	---	--

Data content:

e.g. "SW-1.0.0.1" in ASCII code

6.1.8 Object 1010h: Store parameters

Writing the command "save" initiates the storing of the parameters to the non-volatile memory (EEPROM).

1010h	ARRAY	Store parameters	Unsigned 32	RW	0
	1		-		

The following commands are stored with this command: 1005h, 1014h, 1800h (sub-index 1 and 3), 1802h (sub-index 1), 2000h, 2001h, 2005h, 6000h, 6001h, 6002h, 6003h, 6200h.

The command will only be executed when the string "save" is entered as the codeword in this sub-index to prevent accidental saves.

NOIE	
The values stored in EEPROM (power ON values) will be irretrievably overwritten with this command!	

A read access to the CANopen device provides information about its capability to store these values. (Data: 01h = storage possible)

 Data content:

 Write access:

 Byte 0: 73h
 (ASCII code for "s")

 Byte 1: 61h
 (ASCII code for "a")

 Byte 2: 76h
 (ASCII code for "v")

 Byte 3: 65h
 (ASCII code for "e")

 save = 0x65766173

6.1.9 Object 1011h: Restore default parameters

This command deletes the parameters in the working memory, and rep[laces them with default values (manufacturer values, resetting of the encoder to values at time of delivery). A read access to the CANopen device provides information about its capability to restore these values. (Data: 01h = reset possible)

1011h	ARRAY	Restore default parameters	Unsigned 32	RW	0
-------	-------	----------------------------	-------------	----	---

Multiple parameter groups are distinguished:

Sub-index 00h: contains the highest supported sub-index.

Sub-index 01h: Restore all parameters refers to all parameters than can be reset.

Sub-index 02h: Restore communication parameters refers to communication-relevant parameters (index from 1000h to 1FFFh). Sub-index 03h: Restore application parameters refers to application-relevant parameters (index from 6000h to 9FFFh).

Example: Restore all parameters

Writing the command 0x64616F6C (=load) under sub-index 01h will reset all parameters in the encoder RAM to their default values.

A read access to the sub-index offers information of whether a reset to default values is possible.

Data content:		
Write access:		Read access:
Byte 0: 6Ch	(ASCII code for "I")	Bit 0 = 1: Device supports the loading of default values
Byte 1:6Fh	(ASCII code for "o")	
Byte 2:61h	(ASCII code for "a")	Bit 131 = 0: reserved
Byte 3: 64h	(ASCII code for "d")	
	(,	

The default values become valid only after a "NMT reset". After a "NMT reset" the command "Save parameter" (see object 1010h) must also be executed if the default values are to be applied to EEPROM as well. **I o a d = 0x64616F6C**

6.1.10 Object 1014h: COB D emergenc

The object defines the COB ID for emergency messages The behaviour in case of an error is described in Object 1029h "Error behaviour".

1005h	VAR	COB ID EMCY	Unsigned 32	RW	0	
-------	-----	-------------	-------------	----	---	--

Data content:

Bit 0...10: 11 bit identifier; default ID = 80h + node number Bit 11...29: reserved for 29-bit identifier devices

Bit 30, 31: reserved

Emergency objects occur in error situations within a CAN network, and will be triggered depending on the type of event, and are then transmitted via the bus with high priority.

NOTE An emergency object will only be triggered once per event. No new object will be generated while the error persists. Once the error has been remedied, a new emergency object with content 0000h ("Error reset" or "No error") will be generated and sent to the bus. Emergency messages for TURCK CANopen sensors: Code 0000h = No errorAn "Emergency clear" message (code 0000h) will be transmitted during startup and after the "Boot up" message. Code 5000h = Internal software error (device return to manufacturer) An emergency message with the code 0x5000 with the following code class will be generated if the encoder has an internal hardware error: 0x5001: Hardware ROM check error: Device defective, please return to manufacturer! Code 6100h = Internal software error An emergency message with the code 0x6100 with the following code class will be generated if the encoder has an internal software error: 0x4000: only warning message, no program abort 0x4810: Write buffer overflow, TPDO message lost 0x4820: Write buffer overflow, TPDO message lost 0x4830: Write buffer overflow, SDO message lost 0x4840: Write buffer overflow, heartbeat message lost 0x8000: Grave error, abort required/reset 0x8010: MCO initialisation failed 0x8021: Not in the CAN receipt filter, NMT 0x8022: Not in the CAN receipt filter, PDO 0x8023: Not in the CAN receipt filter, SDO 0x8031: Initialisation of PDO parameters out of range 0x8032: Access to process image out of range

0x8041: Outside of TPDOs

0x8042: Outside of RPDOs

0x8043: No RPDO mapping found

Code 8130h = Heartbeat error

An emergency message with code 8130h is generated if heartbeat monitoring is activated and a loss of heartbeat information is detected. The error range shows the node ID of the affected node.

Code 8200h = Protocol error

An emergency message with code 8200h is generated if a faulty NMT command (CAN message ID = 0) is received.

6.1.11 Object 1015h: Inhibit time emergency

The object defines the inhibit time for emergency messages. This object specifies the pre-configured inhibit time for the EMCY message.

The value is given in multiples of 100 µs. Select the value "0" to deactivate the inhibit time. (max. 6553 ms)

1015h	VAR	Inhibit time EMCY	Unsigned 16	RW	0
-------	-----	-------------------	-------------	----	---

Default value: 0_{dec}

Value range: 0, 10...65530_{bin} (corresponds to 1 ms....6553 ms)

NOTE
Only full millisecond values are stored. In-between values are rounded up.

6.1.12 Object 1017h: Producer heartbeat time

The producer heartbeat time defines the heartbeat cycle. The time must be set to "0" if this function is not needed. The function is activated with a value of min. 1 ms. (1 ms32767 ms).

1017h	VAR	Producer heartbeat time	Unsigned 16	RW	0
-------	-----	-------------------------	-------------	----	---

Value range: 0...32767_{bin} (corresponds to 0 ms....32767 ms)

Default value: 0_{dec}

NOTE	
A heartbeat producer transmits the heartbeat message at the specified cycle times.	

The content of the data bytes corresponds to the status of the CAN node:

Pre-operational:	Data 7Fh
Operational:	Data 05h
Stopped:	Data 04h

6.1.13 Object 1018h: Identity object

This object reads the device ID.

1018h	RECORD	Device identification	Identity (23h)	RW	0
					·

Sub-index 0h :delivers the number of entries (4 entries)Sub-index 1h:delivers the Turck vendor ID (0000009Ch)Sub-Index 2h:delivers the product code (e.g. Turck QR24 CANopen)Sub-Index 3h:delivers the SW revision number (e.g. 1.0.0.1), see table "3-Point notation"
Example: Version 1.0.0.1 = 10_{dec} = $0Ah_01h$ = 0A01hSub-index 4h:delivers the 8-digit serial number of the encoders

6.1.14 Object 1029h: Error behavior

In case of a grave error, the device reacts with the behaviour parametrised here.

1029h ARRAY Error behavior Unsigned 8 RW O	
--	--

Error classes:

0x1029, sub-index1 / communication error

- (Default 1 = sensor does not change mode):
 - Bus OFF status
 - Heartbeat monitoring failed

0x1029, sub-index 2 / device profile-specific

(Default 1 = sensor does not change mode):

Error positioning element: No RLC coupling

0x1029, sub-index 3 / manufacturer-specific

(Default 1 = sensor does not change mode):

- NV RAM / EEPROM error
- System monitoring error

Value range (8 bit unsigned):

0 = sensor changes to pre-operational mode

1 = sensor does not change mode

2 = sensor changes to stopped mode

6.1.15 Object 1800h: PDO1- Parameter (asynchronous)

PDO1: Metering value output "Position" in set time cycles

The object contains the parameter for the process data object PDO1. Via this service, the process data of the encoder is output asynchronously, triggered by the internal cycle timer (prerequisite: the cycle timer was set via object 6200h).

1800h	RECORD	PDO1 parameter	PDO COMMPAR (20h)	RW	M/O
Data content:					
Sub-index 0h:	Number of suppo Read only Value range: 25	rted sub-indices.			
Sub-index 1h:	Bit 1129: 0 (rese Bit 30: 0 = RTR pe	e dentifier; default ID = 180 rved for 29-bit identifier rmitted (cannot be modi bled), 1 (PDO disabled);	devices)		
Sub-index 2h:		e = 255 dec. (see overview e = asynchronous) ject1800h)	w of transmission types)		
Sub-index 3h:		waiting time until PDO c .65530 _{bin} (corresponds to	an be sent again. Default va o 1 ms6553 ms)	lue = 0h (no inhibit i	time)
	econd values are sto object 1010h. Defau		NOTE are rounded up. Applicatior	of the values to the	non-volatile memory
Sub-index 4h:	Assigned				
Sub-index 5h:		no data output	65535 x 1 ms = 1 ms 65	5535 ms.	
T I	·	to the tax of her also here and	NOTE Peed Minimum times for eve		

The number of possible messages is limited by the bus speed. Minimum times for event timer are valid for the operation with one PDO.

Baud rate 1000 kBit/s 500 kBit/s	Messages/ms 7,8 3,9	Event timer (min) 1 ms 1 ms
250 kBit/s	1,9	1 ms
125 kBit/s	0,97	2 ms
50 kBit/s	0,39	3 ms
20 kBit/s	0,15	7 ms
10 kBit/s	0,07	15 ms

6.1.16 Object 1801h: PDO2 parameters (synchronous, cyclic)

PDO2: Metering value output "Position" at SYNC request (80h)

The object contains the parameters for the process data object PDO 2. Via this service, the process data of the encoder are output synchronously in the default setting, initiated by SYNC objects.

	The	number of possible SYN	NOTE NC messages is limited by th	ne bus speed.			
1801h	RECORD	PDO2 parameters	PDO COMMPAR (20h)	RW	M/O		
Data content: Sub-index 0h:	Number of supporte Read only Value range: 25	ed sub-indices.					
Sub-index 1h:	Bit 1129: 0 (reserve Bit 30: 0 = RTR perm	it 010: 11 bit identifier; default ID = 280h + node number it 1129: 0 (reserved for 29-bit identifier devices) it 30: 0 = RTR permitted (cannot be modified) it 31: 0 (PDO enabled), 1 (PDO disabled);					
Sub-index 2h:		1 dec (see overview of = synchronous, cyclic) :t 1800h)	transmission types)				
Sub-index 3h:		aiting time until PDO ca 530bin (corresponds to	n be sent again. Default val 9 1 ms6553 ms)	ue = 0h (no inhik	bit time)		
	second values are sto object 1010h. Defaul		NOTE are rounded up. Applicatio	n of the values to	o the non-volatile memory		
Sub-index 4h:	Assigned						
Sub-index 5h:		the timer is between 1. ithout function when t	65535 x 1ms = 1ms6553 ransmission type 1h = syncl				
	of possible messages i ; is also valid for SNC t		NOTE eed. Minimum times for eve	ent timer are vali	d for the operation with		
Baud rate 1000 kBit/s 500 kBit/s 250 kBit/s 125 kBit/s	Messages/ms 7,8 3,9 1,9 0,97	Event timer (min) 1 ms 1 ms 1 ms 2 ms					

3 ms

7 ms

15 ms

50 kBit/s

20 kBit/s

10 kBit/s

0,39

0,15

0,07

6.1.17 Object 1802h: PDO3 parameters (asynchronous)

PDO3: Metering value output "Position" at value change The object contains the parameters for the process data object PDO3. Via this service, the process data of the encoder is output in transmission type "Manufacturer, asynchronous" when triggered by a change in the process value.

1802h	RECORD	PDO3 parameters	PDO COMMPAR (20h)	RW	M/O			
Data content: Sub-index 0h:	Number of suppo Read only Value range: 25							
Sub-index 1h:	Bit 010: 11 bit ic Bit 1129: 0 (reser Bit 30: 0 = RTR per	COB ID and release Bit 010: 11 bit identifier; default ID = 380h + node number Bit 1129: 0 (reserved for 29-bit identifier devices) Bit 30: 0 = RTR permitted (cannot be modified) Bit 31: 0 (PDO enabled), 1 (PDO disabled); Default value = 0						
Sub-index 2h:		= 254 dec (see overview of t e = manufacturer, asynchron ect 1800h)						
Sub-index 3h:		waiting time until PDO can b 55530bin (corresponds to 1 r	e sent again. Default value = 0 ns65535 ms))h (no inhibi	t time)			
	econd values are st object 1010h. Defau	ored. In-between values are i	NOTE ounded up. Application of the	e values to t	he non-volatile memory			
Sub-index 4h: Sub-index 5h:	Event timer (Settir The value range for In transmission typ	or the timer is between 165	$535 \times 1 \text{ ms} = 1 \text{ ms}65535 \text{ ms}$ synchronous and event timer lue change.		ering values will also			

6.1.18 Object 1803h: PDO4 parameters (asynchronous)

PDO4: Metering value output "Speed" in set time cycles

The object contains the parameters for the process data object PDO 4. Via this service, the process data of the encoder is output asynchronously, triggered by the internal cycle timer (prerequisite: the cycle timer was set via object 6200h).

1803h	RECORD	PDO4 parameters	PDO COMMPAR (20h)	RW	M/O		
Sub-index 0h:	Number of supported sub-indices. Read only Value range: 25						
Sub-index 1h:	Bit 1129: 0 (reserv Bit 30: 0 = RTR perr	entifier; default ID = 48 ved for 29-bit identifier nitted (cannot be modi oled), 1 (PDO disabled);	devices) ified)				
Sub-index 2h:	Transmission type (Transmission type (Overview see obje	= asynchronous)	v of transmission types)				
Sub-index 3h:		vaiting time until PDO o 5530bin (corresponds	can be sent again. Default v to 1 ms6553 ms)	value = 0h (no in	hibit time)		
	econd values are sto object 1010h. Defau		NOTE are rounded up. Application	on of the values	to the non-volatile memory		
Sub-index 4h:	Assigned						
Sub-index 5h:		no data output	165535 × 1 ms = 1 ms6	55535 ms.			
The number o	f possible messages	is limited by the bus sp	NOTE beed. Minimum times for ev	vent timer are va	alid for the operation with		
one PDO.							

50 kBit/s	0,39	3 ms
20 kBit/s	0,15	7 ms
10 kBit/s	0,07	15 ms

6.1.19 Overview transmission types

A value between 1...240 means that the PDO is sent synchronously or cyclic. The transmission type number means the number of SYNC impulses required to send the PDOs. Transmission type 252 and 253 mean that the PDO is only sent on request via RTR. Type 254 means that the event is triggered application-dependently, while number 255 is device profile-dependent. Additionally, a time-controlled event timer can be implemented for the numbers 254/255. The value range for the timer is between 1 ms...65535 ms.

Code (dec.)	Transmission type						
	cyclic	acyclic	synchronous	asynchronous	only RTR		
0		Х	Х				
1-240	Х		Х				
241-251	reserved						
252*			Х		Х		
253*				Х	Х		
254				Х			
255				Х			

* not supported

Meaning of the transmission type codes:

- 0: Synchronous = 0x00h, after SYNC, but only in case of value change after last SYNC
- 1-240: Cyclic-synchronous = 0xEF , send value after SYNC
- 241-251: Assigned
- 252: Synchronous with RTR = 0xFC
 - SYNCH leads to internal value storage, but value must be called via RTR;
- 253: Asynchronous with RTR = 0xFD
 - Value is updated and sent after RTR(request)

254: Manufacturer (asynchronous) = 0xFE

a) Value is updated and sent after a value change (if device timer = 0) or after completion of cycle time (device timer \neq 0) b) Value is updated and sent after RTR(request);

- c) Cyclic RTR output with event- timer possible.
- d) Combination with inhibit timer (inhibit time) possible
- 255: Asynchronous = 0xFFh, value is updated and sent after completion of cycle time (device timer $\neq 0$)

6.2 Variables PDO mapping

Variables mapping of the various objects means that the user can configure the content of the transmit PDOs applicationindependently.

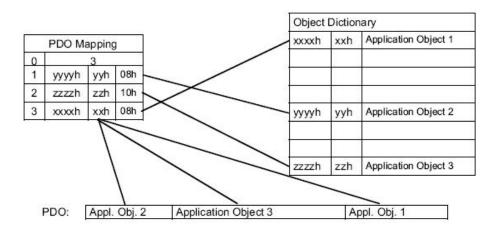
There are two basic mapping options:

- 1. The properties of the PDOs can be configured individually via the object 1800h ff. (Transmission type, inhibit time, event time)Time
- 2. Multiple PDOs up to max. 64 bit can be transmitted using one CAN telegram. These PDOs are listed in a mapping table. -> Objects 0x1A00ff, 0x01ff = mapping table

The max. data length of the CAN telegram is 65 bit (8 byte), therefore allowing the mapping of e.g. two application object entries with 32 bit each, or four entries with 16 bit each in a mapping table (= objects 0x1A00ff, 0x01ff)

Two prerequisites must be met:

- 1. The overall size of the mapped objects within a PDO mapping table (objects 0x1A00ff) must not be surpass 64 bit.
- 2. All mapped objects in a PDO mapping table (objects 0x1A00ff) have the same transmission type, inhibit time, and event time.


Example: Mapping tables for TPDO1 and TPDO2

1800h mapping ta	ible TPDO 1	1801h mapping table	TPDO 2
Position value Position raw value		Position valueSpeed valueAlarms	
COB ID 1800h, 0x01	XXXXXXXX	COB ID 1801h, 0x01	XXXXXXXX
Transmission type 1800h, 0x02	255 asynchronous	Transmission type 1801h, 0x02	254 synchronous
Inhibit time 1800h, 0x03	0	Inhibit time 1801h, 0x03	0
Event time 1800h, 0x05	100	Event time 1801h, 0x05	0
Mapping object1 1A00h,0x01	Position value 32 bit	Mapping object1 1A01h,0x01	Position value 32 bit
Mapping object 2 1A00h,0x02	Position raw value 32 bit	Mapping object 2 1A01h,0x02	Speed value 16 bit
Mapping object 3 1A00h,0x03	No entry, as 64 bits assigned	Mapping object 3 1A01h,0x03	Alarms 16 bit
Mapping object 4 1A00h,0x04	No entry, as 64 bits assigned	Mapping object 4 1A01h,0x04	No entry, as 64 bits assigned

Sample entry in the mapping table:

The mapped PDO consists of 3 application object entries with varying lengths:

Application object 2 occupies byte 1 (08h) in the transmission PDO. Application object 3 with a length of 16 bit (10h = 2 byte) follows, and then comes application object 1 with 1 byte length. Overall, 32 bit are assigned in this PDO.

6.2.1 Object 1A00h: PDO1 mapped object

Up to four application objects (position, speed, ...) can be transmitted in one PDO. The max. data length is 64 bit. The PDO mapping is possible only with the objects 6000h – 6FFFh.

1A00h	RECORD	PDO1 mapp	ing parameter	PDO MAPPING (21h)	RW	M/O
Data content:						
Sub-index 0h:	Number of supported sub-indices. Read only Value range: 14					
Sub-index 1h:	1_mapped_	_object (defau	ılt: 0x60040020, positi	on value)		
	Example:					
	Mapping Object: Sub-index o Data length	of the object: n:	TPDO1 position valu 6004h 00h 20h (32 bit)	le		
			entered in the object neters, data: 0x657661	0x1A00, 0x01. 7 (PWR on reset required)		
Sub-index 2h:	2_mapped_	_object (defau	ılt: no entry)			
Sub-index 3h:	3_mapped_	_object (defau	ılt: no entry)			
Sub-index 4h:	4_mapped_	_object (defau	ılt: no entry)			

6.2.2 Object 1A01h: PDO2 mapped object

Up to four application objects (position, speed, ...) can be transmitted in one PDO. The max. data length is 64 bit.

1A01h	RECORD	PDO2 mapping parameter	PDO MAPPING (21h)	RW	M/O	
Data content:						
Sub-index 0h:	Number of supported sub-indices. Read only Value range: 14					
Sub-index 1h:	1_mapped_obje	ect (default: 0x60040020, positic	on value)			
Sub-index 2h:	2_mapped_object (default: no entry)					
Sub-index 3h:	3_mapped_obje	ect (default: no entry)				
Sub-index 4h:	4_mapped_obje	ect (default: no entry)				

6.2.3 Object 1A02h: PDO3 mapped object

Up to four application objects (position, speed, ...) can be transmitted in one PDO. The max. data length is 64 bit.

1A02h	RECORD	PDO3 mapping parameter	PDO MAPPING (21h)	RW	M/O		
Data content:							
Sub-index 0h:	Number of supported sub-indices. Read only Value range: 14						
Sub-index 1h:	1_mapped_obj	ect (default: 0x60040020, position	n value)				
Sub-index 2h:	2_mapped_object (default: no entry)						
Sub-index 3h:	3_mapped_obj	3_mapped_object (default: no entry)					
Sub-index 4h:	4_mapped_obj	ect (default: no entry)					

6.2.4 Object 1A03h: PDO4 mapped object

Up to four application objects (position, speed, ...) can be transmitted in one PDO. The max. data length is 64 bit.

1A03h RECORD PDO4 mapping parameter	PDO MAPPING (21h)	RW	M/O
-------------------------------------	-------------------	----	-----

Data content:

Sub-index 0h: Number of supported sub-indices. Read only Value range: 1...4

6.2.5 Example: Create mapping for PDO3 (speed)

Up to four application objects (position, speed, ...) can be transmitted in one PDO. The max. data length is 64 bit.

Example:

A) Configure the communication parameters via object 1802h

The communication parameters of the encoder are configured via object 1802h (communication parameter). These include: COB ID, transmission type, inhibit time, event time

- 0x1800 TxPDO1 Communication Parameter
- 0x1801 TxPDO2 Communication Parameter
- 0x1802 TxPDO3 Communication Parameter
 - 📋 0x00 NrOfEntries
 - 🗐 🗘 🔍 🔍 📖 🔍 📖
 - 📄 0x02 Transmission Type
 - 📄 0x03 Inhibit Time
 - 🗐 0x05 Event Timer

B) Current metering values are stored in object 6030h sub-index 01h only.

- 🗊 Standardized Device Profile
 - 🗐 0x6000 Operating Parameters
 - 🗐 0x6001 Measuring Units Revolution
 - 🗐 0x6002 Total Measuring Range
 - 📖 🗻 0x6003 Preset Value
- 📄 0x6004 Position Value
- ia.... In Ox6030 Speed Value
 - 📄 0x00 Number of Channels
 - 🗐 0x01 Speed Value 1

C) The mapping is stored in object 1A02h sub-index 01h.

Ox1A00 TPDO1 Mapping
 Ox1A01 TPDO2 Mapping
 Ox1A01 TPDO3 Mapping
 Ox1A02 TPDO3 Mapping
 Ox00 NrOfEntries
 Ox00 NrOfEntries
 Ox01 3_Mapped Object

The mapping consists of the following:

Mapping TPDO3	Speed
Object:	6030h
Sub-index of the object:	01h
Data length:	10h (16 bit)
Mapping	0x60300110

The value 0x60300110 is entered in the object 0x1A02, 0x01. 0x1010, 0x01: Save parameters, data: 0x65766173 (PWR on reset required)

6.2.6 Default setting for transmit PDO settings

The CANopen encoder supports variable mapping on all transmit PDOs.

PDO	TPDO1	TPDO2	TPDO3	TPDO4
Mapping object	1A00h	1A01h	1A02h	1A03h
Transmission type Object: 0x1800 ff, 0x02	255h "Position" in set time cycles	001h "Position" at SYNCH request (80h)	254h "Position" at value change	255h "Speed" in set time cycles
Object of the metering value	6004h	6004h	6004h	6030h
Sub-index	00h	00h	00h	01h
Data length	20h (32 bit)	20h (32 bit)	20h (32 bit)	10h (16 bit)
Mapping	0x60040020	0x60040020	0x60040020	0x60300110

6.2.7 PDO mapping in accordance with CiA (from CANopen version 4)

The default assignment of the process data objects (default mapping) will generally satisfy requirements. For special use cases, the assignment can be changed: Many TURCK CANopen devices support variable mapping, which allows the free assignment of application objects (input and output data) to PDOs. This will require a configuration of the mapping tables: Only the following procedure is permissible as of CANopen version 4, which must be complied with to the letter:

- 1. 0x1800ff, sub-index 1, COB ID, set bit 31 to "1" (lock PDO) Data: 0x4000 019B -> 0xC000 019B (example)
- 2. 0x1A00ff, sub-index 0, set number of mapping entries to"0" Data: 0x01 -> 0x00 (example: one entry to zero entries)
- 3. 0x1A00ff, change sub-index 1(...8)
- Data: 0x6004 0020 -> 0x600C 0020 (example)
- 4. 0x1A00ff, sub-index 0, set number of mapping entries to "1, 2, 3...". Data: 0x00 -> 0x01 (example: one entry)
- 5. 0x1800ff, sub-index 1, COB ID, set bit 31 to "0" (unlock PDO) Data: 0xC000 019B -> 0x4000 019B (example)

6.3 Objects 2000h – 2FFFh (manufacturer specifications)

6.3.1 Object 2100h: Baud rate

The Baud rate without LSS service is set via this object.

2100h VAR Baud rate Unsigned16 RW M								
NOTE								
A password is necessary to change the object. Service pass code object 0x2900, 0x01 (Unsigned32). The password is 12345 (dec) resp. 0x3039.								
Takes effect after next reset/power ON reset								

Object 0x2100 sub-index: 0x00 Data: 1000 = 1000 kbps (unsigned 16) = 500 kbps (unsigned 16) Data: 500 Data: 250 = 250 kbps (unsigned 16) Data: 125 = 125 kbps (unsigned 16) (unsigned 16) = 50 kbps Data: 50 Data: 20 = 20 kbps(unsigned 16) = 10 kbps(unsigned 16) Data: 10

Default 125 kbps

6.3.2 Object 2101h: Node number

The node number can be changed using software via this object. The default value is 0x03h. The device will boot with a changed node address after next activation or "Reset node" if the value is set between 1...127.

2101h VAR Node number	Unsigned8	RW	м
-----------------------	-----------	----	---

NOTE

A password is necessary to change the object. Service pass code object 0x2900, 0x01 (Unsigned32). The password is 12345 (dec) resp. 0x3039.

Value range: 1...127 or 1...7Fh Default settings: 03h

> **NOTE** Node number 0 is reserved and must not be used by any other node.

A new node number is applied only after the next boot-up (Reset/Power ON) of the encoder, or via a NMT Reset Node command. All other settings in the object table remain unchanged.

6.3.3 CANbus termination

This object enables/disables the bus termination. An integrated 120 Ω terminating resistor will be enabled/disabled accordingly.

2102h	VAR	CAN bus termination	Unsigned8	RW	M

The change takes effect when "Save all bus parameters" (0x2105) is executed

Access: R/W Value range: 8 bit unsigned

1=termination on 0=termination off

6.3.4 Object 2104h: NMT autostart

The start-up mode of the encoder is specified via this object.

2104h	VAR	NMT autostart	Unsigned8	RW	Μ

Object 0x2104 sub-index: 0x00 Data: 0 = Pre-operational Data: 1 = Operational

6.3.5 Object 2105h: PDO trigger threshold

Up to four application objects (position, speed,...) can be transmitter in one PDO. The max. data length is 64 bit.

2105h VAR PDO trigger threshold Unsigned8 RW M
--

Setting the PDO trigger threshold:

Configure the trigger threshold for the angle change as follows: Object 0x2105 sub-index: 0x00 Data: 0...255 (unsigned 8) Default = 20

Example: For the PDO to be transmitted automatically, the position value must change by at least 10 if the value is set to 10.

NOTE
The PDO function "Transmit when angle changes" (transmission type = 254 dec.) must be enabled. Configure the desired PDOs
as follows: Object: 0x1800ff , sub-index:0x02, Data: 0xFE(Manufacturer).

6.3.6 Object 2106h: Filter configuration

Two filter types can be selected for filtering metering values. A configurable low pass filter and a configurable dynamic filter.

2106h	VAR	Filter configuration	Unsigned8	RW	М	
-------	-----	----------------------	-----------	----	---	--

At standstill (motion detection), the filter is operated with a low threshold frequency (high group delay), allowing for minimal signal noise at high resolution. A low pass filter (moving average) is a first order type. The dynamic digital filter is status and speed-dependent. The filter constant can be set in object 2106h, sub-index 0x02. A switchover to a high threshold frequency occurs (low group delay), when the positioning element is moved.

The filters can be selected as follows:

Object: 0x2106	sub-index: 0x01	Data:	0 = Filter OFF
			1 = Low pass filter ON
			2 = Dynamic IIR filter ON

Configuring the filter constant. The setting applies for both filter types:

```
Object: 0x2106 sub-index: 0x02 Data: 1...255 (Default =20)
```

NOTE

It will take several seconds for the current metering value to level out if the values selected for the filter constant are very high (higher than 50).

6.3.7 Object 2110h: Customer memory

The start-up mode of the encoder is specified via this object.

2110h	VAR	/AR Customer memory Unsigned32 RW M								
Ox2110, 0x010x04Customer memory range - Four number values can be stored here in the range unsigned 32. - The stored data is informal and have no impact on the function of the encoder. - e.g. Installation date: 2014 = 1111011110b										

6.3.8 Object 2200h: Sensor Amplitude (Manufacturer)

The access on the actually sensor amplitude (resonant circuit coupling) is possible via this object.

2200h VAR Sensor Amplitue	e Unsigned to	RO	Μ
---------------------------	---------------	----	---

0x2200, 0x00 - The value should be min. 1200dec.

- Can be mapped via PDO.

- Not available in the EDS file.

NOTE

A password is necessary to change the object. Service-pass code object 0x2900, 0x01 (Unsigned32). The password is 12345 (dec) resp. 0x3039.

6.3.9 Object 2201h: Target Frequence Deviation (Manufacturer)

The access on the actually frequency deviation of the resonant circuit is possible via this object.

2201h VAR Target Frequence Deviation Integer16 RO M	
---	--

0x2201, 0x00 - The value of ±9375dec should not be exceeded/underrun

- Can be mapped via PDO.

- Not available in the EDS file.

NOTE

A password is necessary to change the object. Service-pass code object 0x2900, 0x01 (Unsigned32). The password is 12345 (dec) resp. 0x3039.

6.4 Objects 6000h - 6FFFh (default device parameters)

6.4.1 Object 6000h: Operating parameters

This object activates: code sequence reversal, diagnostics request, scaling function.

6000h	VAR	Operating parameters	Unsigned16	RW	Μ
Data content:					
Bit 0: Code sequence		ding when rotation is clockwise (cw ding when rotation is counter-clock it = 0			
Bit 1:	free (0)				
Bit 2:	0 = disabl	nction; (scaling configuration via ol e (sensor outputs raw data) e (see object 6001h, 6002h) it = 1	oject 6001,6002)		

		NOTE			
Tł	ne scaling functior	is available only for Device_Type 0 an	d 1. See: Objects 29	00h 0x03 and 29	900h, 0x04.
Bit 312:	free (0)				
Bit 13:	Speed format; 0 = Revolutions Default: Bit = 0	/minute (RPM)			
Bit 1415:	free (0)				
-		easuring Units per Revolution) esolution per revolution.			
6001h	VAR	Measuring units per revolution	Unsigned32	RW	М
The encoder ca	lculates the releva	nt scaling factor internally. Prerequisit	e: Scaling function b	oit 2 of object 60	000h = 1
Value range:		cal resolution (full range) l0-CNX4-2H1150: 327680 = full range : 36000	2		
		NOTE			
The max. physenable (1).	sical resolution is a	factory setting in object 6501h (read	only). In object 6000	h bit 2: Set scali	ng function to
	001h: TMR (Total N cifies the measurin				
6002h	VAR	Total measuring range	Unsigned32	RW	М
Value range:		x. physical resolution (full range) 0-QR24M0-CNX4-2H1150: 327680 = 1	full range		
Default setting TMR = MUR / n		es if the encoder us used in single-turr	n mode.		
MUR: Object 60 TMR: Object 60 At a physical ze	02h	o will occur in the source code (in sing	le-turn mode after e	every rotation).	
		NOTE	· · · · · · · · · · · · · · · · · · ·	• •	
		In object 6000h bit 2: Set scaling	function to enable (I).	
Example 1:					
		ie range: 1 max. phys. resolution) range: TMR = MUR/n, n=1, 2 ,3)			
Output: One re	evolution is divided	d into 10 × 0360			
Example 2:					
Setting: 6001h 6002h	: MUR= 3600 : TMR= 3600				
Output: One re	evolution is divided	d into 03600			

Example 3 skip in the source code:

Setting: 6001h: MUR= 3600 6002h: TMR= 3000

Output: One revolution is divided into 0...3000 and 0...600

NOTE The max. physical resolution is a factory setting in object 6501h (read only). In object 6000h bit 2: Set scaling function to enable (1).

6.4.4 Object 6003h: Preset value

The position value of the encoder is configured to this preset value. This allows e.g. an endpoint alignment of the encoder with the machine endpoint.

6003h	VAR	Preset value	Unsigned32	RW	O/M
-------	-----	--------------	------------	----	-----

Value range: Ri360P0-QR24M0-CNX4-2H1150: 1...327680

Default settings: 0

During the input of the preset value, the device automatically checks whether the point is within the enabled scaling or the total measuring range, otherwise the input will be rejected.

Example 1: Currently read measuring value: Preset value: Result offset:	33 Write the value 0 to object 6003h. The measuring value changes from 33 to 0. The endpoint is moved by -33.
Example 2: Currently read measuring value: Preset value: Result offset:	33 Write the value 50 to object 6003h. The measuring value changes from 33 to 50. The endpoint is moved by +17.

The offset value is calculated and stored additionally in object 0x6509, 0x00.

Offset value = preset value - position measuring value

6.4.5 Object 6004h: Position value

The encoder outputs the current position value (poss. after calculation with scaling factor).

6004h VAR Position value Unsigned 32	2 RO	М
--------------------------------------	------	---

Data:

Byte 0	Byte 1	Byte 2	Byte 3
2720	2 ¹⁵ 2 ⁸	2 ²³ 2 ¹⁶	2 ³¹ 2 ²⁴

Value range: 0... max. physical resolution Default: actual position

6.4.6 Object 600Ch: Position raw value

The encoder outputs the current position value in max. physical resolution (no scaling).

600Ch VAR Position raw value Un	Jnsianed 32	RO	O/M
---------------------------------	-------------	----	-----

Value range:

RI360P0-QR24M0-CNX4-2H1150: 0...327680 (full range)

6.4.7 Object 6030h: Speed value

The encoder outputs the currently calculated speed in rpm.

6030hVARSpeed valueSigned16ROO	
--------------------------------	--

This value is output in a read access with object 6030h as a signed 16 bit value. Positive value = clockwise rotation Negative value = counter-clockwise rotation

Value range: 0...max. speed 1500 rpm.

Example: 500 rpm counter-clockwise -> - 500dec

A warning message is issued for speeds higher than 1500 rpm, and the warning bit "Speed range" bit 6 in object Warnings 6505h is set. Relevant mapping will allow the output of the speed via PDO.

NOTE

Prerequisite here is that bit 13 (Speed format) in object 6000h is set to 0.

6.4.8 Object 6200h: Cycle timer

Defines the cycle time in which the current position is output via PDO1 (see object 1800h). The timer-controlled output is enables as soon as a cycle time >0 is entered. Applies to PDO1 only.

6200h	VAR	Cyclic timer	Unsigned16	RW	M/O
-------	-----	--------------	------------	----	-----

Note: This object only remains for reasons of compatibility with older profile versions. In the current transmit PDO, the event timer sub-index (05h) should be used instead.

Value range: 0...FFFFh (65535dec) provides the cycle time in milliseconds. Default value: 100dec

NOTE No measuring value output occurs if cycle time = 0.

6.4.9 Object 6400h: Work area state register

This object contains the current status of the encoder position in relation to the programmed limits. Depending on position of the two endpoints, flags are set or reset. Where the measuring values are within the work area, bits 0...7 will have **the value 0.**

6400h	VAR	Area state register	Unsigned8	RO	0	
-------	-----	---------------------	-----------	----	---	--

Object 0x6400, 0x01, work area state register channel 1 (Unsigned8)

Bit 0 =1: Outside of work_area_1 Bit 1 =1: Greater than high_limit_1 Bit 2 =1: Less than low_limit_1 Bit 3...7:free (0)

Data: 05h = Position value < low limit Data: 00h = Position value within limit Data: 03h = Position value > high limit

Object 0x6400, 0x02, work area state register channel 2 (Unsigned8)

Bit 0 =1: Outside of work_area_2 Bit 1 =1: Greater than high_limit_2 Bit 2 =1: Less than low_limit_2 Bit 3...7:free (0)

Data: 05h = Position value < low limitData: <math>00h = Position value within limitData: <math>03h = Position value > high limit

NOTE

The two end value objects 6401h and 6402h must be checked to ensure the correct activation of the output signals. These limit values are additionally stored in the object 0x1002 "Manufacturer status register", and can therefore also be mapped as PDO.

6.4.10 Objects 6401h and 6402h: Working area limits

These two parameters set the working area. The status can be reported via flag bytes within and outside of this area (object 6400 "Working area state"). These area markers can also be used as software end switches.

6401h/02h	VAR	Working area limits H/L	Integer32	RW	0
Object 6401h: Workir Object 6402h: Workir					
Value ranges:					
Ri360P0-QR24M0-CN	X4-2H1150:	0 327680 dec. (full range)			

Default setting:
Working area LOW limit: 0 _{dec} Working area HIGH limit: 0 _{dec}
Example 1:
Set measuring range to 3600 using 6001h and 6002h. Limit values range 1: 03600, range 2: 03600, i.e. all measuring values 03600 must be in the range.
0x6400, 0x00 = 0x01 -> 1 channel 0x6400, 0x01 = 0x09 -> 0000 1001-> values in range 1 and range 2 (see 6400h)
0x6401,0x00 = 0x02 0x6401,0x01 = 0 (low limit 1) 0x6401,0x02 = 0 (low limit 2)
0x6402,0x00 = 0x02 0x6402,0x01 = 3600 (high limit 1) 0x6402,0x02 = 3600 (high limit 2)
Example 2:
Limit values range 1: 9003600 (90°360°), range 2: 18003600 (180°360°) Current measuring value: 450 (45°)
0x6400, 0x00 = 0x01 -> 1 channel 0x6400, 0x01 = 0x24 -> 0100 0100 -> values in range 1 and range 2 < low limit (see object 6400h)
0x6401,0x00 = 0x02 0x6401,0x01 = 900 (low limit 1) 0x6401,0x02 = 1800 (low limit 2)
0x6402,0x00 = 0x02 0x6402,0x01 = 3600 (high limit 1) 0x6402,0x02 = 3600 (high limit 2)
6.4.11 Object 6500h: Operating status read only

This is where the basic settings can be read from object 6000h.

6500h VAF	R	Operating status	Unsigned16	RO	М
-----------	---	------------------	------------	----	---

6.4.12 Object 6501h: Single-turn resolution (read only)

This is where the basic settings can be read from object 6000h. Resolution value (max. phys. resolution) is stored in the encoder, and can only be read.

	6501h	VAR	Single-turn resolution	Unsigned32	RO	М
--	-------	-----	------------------------	------------	----	---

Resolution value:

RI360P0-QR24M0-CNX4-2H1150: 327680 Item No.: 1590914

6.4.13 Object 6502h: Number of distinguishable revolutions (read only) Number of possible multi-turn revolutions

1

	6502h	VAR	Number of distinguishable revolutions	Unsigned16	RO	М
--	-------	-----	---------------------------------------	------------	----	---

Number of revolutions:

RI360P0-QR24M0-CNX4-2H1150: Item No.: 1590914

6.4.14 Object 6503h: Alarms (read only)

The object 6503h offers more error message options in addition to the errors reported in emergency messages. The relevant error bit is set to 1 until the error has been remedied.

	6503h	VAR	Alarms	Unsigned16	RO	M/O
--	-------	-----	--------	------------	----	-----

Data content:

Bit 0...14: free

Bit 15: 1 = no RLC coupling, no position metering possible

In the event of an alarm, an emergency message (ID = 80h + node number) with error code 1000h (generic error) is sent simultaneously.

6.4.15 Object 6504h: Supported alarms (read only)

This object offers information about which alarm messages are supported by the encoder (see object 6503h).

6504h VAR Supported alarms Unsigned16 RO M/O
--

Data content:

Bit 014:	free
Bit 15:	1 = Check for "No RLC coupling" is supported

6.4.16 Object 6505h: Warnings (read only)

Warning messages show that tolerances of internal encoder parameters have been breached. When a warning message is displayed, the measuring value can still be valid (other than with alarm or emergency messages). The relevant warning bit is set to 1 until the tolerance breach has been remedied.

6505h VAR Warnings Unsigned16 RC	O M/O
----------------------------------	-------

Data content:

Bit 05:	free
Bit 6:	1 = Overrun of permissible speed (speed range);
Bit 714:	free
Bit 15:	1 = Amplitude (RLC coupling) weak, but measuring value OK

6.4.17 Object 6506h: Supported warnings (read only)

This object offers information about which warning messages are supported by the encoder (see object 6505h).

6506h VAR Supported warnings Unsigned16 RO M/O	
--	--

Data content:

Bit 05:	free
Bit 6:	1=Warning message "Overspeed" is supported.
Bit 714:	free
Bit 15:	1= Warning message "RLC coupling weak" is supported.

6.4.18 Object 6507h: Profile and software version (read only)

The first 16 bit contain the version number of the encoder profile applied. The second 16 bit contain the number of the software version implemented in the encoder.

		6507h	VAR	Profile and software version	Unsigned32	RO	M/O
--	--	-------	-----	------------------------------	------------	----	-----

Software version Example: 1.2.3.4

Profile version

The version of the CiA DS-406 profile is stored

Data content:

		DS406 version		
		Byte 1	Byte 0	
2 ³¹ 2 ²⁴	2 ²³ 2 ¹⁶	2 ¹⁵ 2 ⁸	2 ⁷ 2 ⁰	

Example: CiA DS406 version: $3.2 = 3_{dec}^{2} = 0.3h_{02}h$

Software version: 1.0.0.1= 10_{dec} 01_{dec} = $0Ah_01h$

Byte 3	Byte 2	Byte 1	Byte 0
0Ah	01h	03h	02h

6.4.19 Object 6509h: Offset value (read only)

A preset value entered via object 6003h is converted internally into a relevant offset value. Object 6509h displays the calculated offset value.

6509h	VAR	Offset value	Signed32	RO	M/O
			-		

The offset value is calculated as follows: Offset = preset - position

6.4.20 Object 650Ah: Module identification (read only)

This object contains various manufacturer-specific data. These include the manufacturer-specific offset value, and the min. and max. position values. All values are stated in the number of steps following the basic resolution of the encoder.

650Ah VAR Module identification Signed32 RO	M/O	
---	-----	--

Data content:

0x650A, 0x00	Number of entries
0x650A, 0x01	Manufacturer offset value
0x650A, 0x02	Manufacturer minimum position value
0x650A, 0x02	Manufacturer maximum position value

6.4.21 Object 650Bh: Serial number (Read only)

This object contains the serial number of the encoder.

650Bh	VAR	Serial number	Unsigned32	RO	М

NOTE

All other objects not listed here are for additional information purposes only, and can be found in the encoder profile DS406 3.1.

6.5 LSS services DS 305 V2.0

CiA DSP 305 CANopen layer setting service and protocol (LSS) were created to allow the reading and modification of the following parameters via the network:

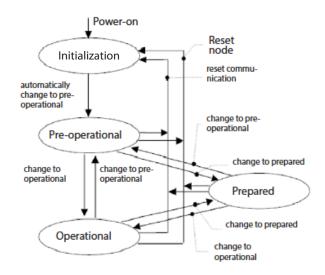
- Node address
- Baud rate
- LSS address

These capabilities enhance the plug & play compatibility of the device, and significantly simplify the configuration options. The LSS master is in charge of the configuration of these parameters for one or more slaves in the network.

LSS services

LSS hardware requirements (LSS address)

All LSS slaves must have a valid object entry for the identity object [1018h] in the object register to allow a selective node configuration. This object consists of the following sub-indices:


- Vendor ID (numerical number)
- Product code (numerical number)
- Revision number (major and minor revision as numerical number)
- Serial number (numerical number)
- LSS master CAN ID 2021
- LSS slave CAN ID 2020

6.6 Network management

The encoder supports the simplified network management (minimum boot-up) defined in the profile for minimum capability devices.

The following status diagram in accordance with DS 301 shows the various node states and relevant network commands (controlled by the network master via NMT services):

Initialization: This is the initial state of the device after connection to the power supply following a reset or power-up. The node automatically cycles to the status "pre-operational", once the reset/initialisation routines are completed. The LEDs show the current device status.

Pre-operational: The CAN node can now be addressed via SDO messages or with NMT commands under the default identifier. The programming of the encoder and communication parameters is executed.

Operational: The node is enabled. Process values are output via the PDOs. All NMT commands can be evaluated.

Prepared or stopped: In this state, the node is no longer enabled, i.e. no SDO or PDO communication is possible. The node can be cycled to the status "Operational" or "Pre-operational" via NMT commands.

NOTE The Encoder-LED might be different from the selected node-condition.

7 Accessory

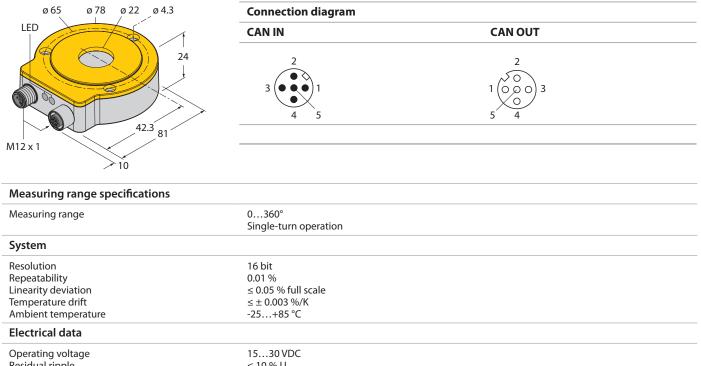
7.1 Assembly accessories

A wide range of accessories is available for the assembly of the sensor.

7.2 Standard assembly accessories

A matching assembly set is available for each device type (see type key, chapter 2.2). The assembly sets contain the aluminium ring M1-QR24 and a shield plate (SP1-QR24 or SP2-QR24, or SP3-QR24).

imension drawing	Туре	Description	Set	Description
not shown	RKC 572-*M RSC 572-*M	Cordset for the connection of the sensor to CANopen (female) Cordset for the connection of the	M2-QR24	M1-QR24 + SP1-QR24 Shield plate
	N3C372 III	sensor to CANopen (male)		Ø 74 mm, aluminium
	RA1-QR24	Adapter sleeve for connection on shafts with Ø 20 mm		ø 4.5
ø 20	RA2-QR24	Adapter sleeve for connection on shafts with Ø 14 mm		074
	RA3-QR24	Adapter sleeve for connection on shafts with Ø 12 mm		8
ø 24	RA4-QR24	Adapter sleeve for connection on shafts with Ø 10 mm		
	RA5-QR24	Adapter sleeve for connection on shafts with Ø 6 mm	M3-QR24	M1-QR24 +
	RA6-QR24	Adapter sleeve for connection on shafts with Ø 3/8"		SP2-QR24
	RA7-QR24	Adapter sleeve for connection on shafts with Ø 1/4"		Shield plate Ø 74 mm, with borehole fo
	MT-QR24	Mounting aid for optimised alignment of positioning element		shaft feed through, aluminium
				04.5 074 022 065
ø 28 - <u>1 1</u> 9,9	RA8-QR24	Blind plug for the assembly of the positioning element	M4-QR24	M1-QR24 +
o 24				SP3-QR24 Shield plate
				Ø 52 mm, aluminium
				¢ 3.2
				0 52 0 42



7.3 Positioning element

A variety of positioning elements can be implemented. The positioning elements are connected to the moving parts of the machine, but are themselves capable of free movement (without any mechanical connection to the sensor) across the active surface of the sensor.

Dimension drawing	Туре	Description
0 3.2 0 52 0 42	P1-Ri-QR24	Positioning element for connection on shafts with Ø 20 mm
¢ 14 ¢ 3.2 ¢ 52 ¢ 42 10 10	P2-Ri-QR24	Positioning element for connection on shafts with Ø 14 mm
¢ 12 ¢ 52 ¢ 42 ↓ 10 ↓ 10	P3-Ri-QR24	Positioning element for connection on shafts with Ø 12 mm
© 10 © 52 © 42 0 10 10	P4-Ri-QR24	Positioning element for connection on shafts with Ø 10 mm
¢ 3.2 ¢ 52 ¢ 42 0 42 10	P5-Ri-QR24	Positioning element for connection on shafts with Ø 6 mm
0 3.2 0 52 0 42	P6-Ri-QR24	Positioning element for connection on shafts with Ø 3/8"
0 3.2 0 52 0 42 0 1/4" 10	P7-Ri-QR24	Positioning element for connection on shafts with Ø 1/4"
0 3.2 0 52 0 42	P8-Ri-QR24	Positioning element with blind plug

8 Technical data

operating ronage					
Residual ripple	\leq 10 % U _{ss}				
Rated insulation voltage	≤ 0.5 kV ⁵⁵				
Reverse polarity protection	yes (voltage supply)				
Output function	5-core, CANopen				
Process data area	parametrisable				
Sampling rate	800 Hz 1 kHz				
Current consumption	< 50 mA				
Design					
Dimensions	81 × 78 × 24 mm				
Housing material	metal/plastic, ZnAlCu1/PBT-GF30-V0				
Connection	2 imes male connectors, M12 x 1, 5-pin CAN IN and CAN OUT				
Vibration resistance	EN 60068-2-6, 55 Hz				
Oscillation resistance	20 g; 103000 Hz; 50 cycles; 3 axes				
Shock resistance	EN 60068-2-27, 30 g				
Continuous shock resistance	40 g; 6 ms ½ sinus; 4000x each; 3 axes				
Protection type	IP67 / IP69K				
LED displays					
Operating voltage display	LED green				
Signal status	LED, yellow, flashing yellow				
Operating status	LED green, flashing green				
Error indication	LED red, flashing red				
Miscellaneous					
Included in the scope of delivery	Assembly aid MT-QR24				
	VZ 3 screw plug				

9 Service

The fault-free condition of the connections and cables must be verified periodically. The device itself is maintenance-free; clean with dry cloth where necessary.

10 Repairs

This device is not intended for repair by the user. Please take the device offline if it is defective. Please note our returns conditions for any returns to TURCK.

11 Device returns

Please note that we can only accept the return of devices accompanied by a decontamination declaration, should it become necessary to return a device. The declaration form is available for download at http://www.turck.de/static/media/downloads/ Dekontamination_de.pdf, must be filled out completely, and must be attached to the exterior of the packaging in a transport-safe and weather-proof sleeve.

12 Disposal

This device is intended for integration in large industrial plants and tool assemblies. The devices must be disposed of correctly and cannot be disposed of in regular household waste.

44 Turck Inc. | 3000 Campus Drive, Minneapolis, MN 55441 | T +1 800 544 7769 | F +1 763 553 0708 | www.turck.com

Turck Inc. sells its products through Authorized Distributors. These distributors provide our customers with technical support, service and local stock. Turck distributors are located nationwide – including all major metropolitan marketing areas. For Application Assistance or for the location of your nearest Turck distributor, call: 1-800-544-7769

Specifications in this manual are subject to change with out notice. Turck also reserves the right to make modifications and makes no guarantee of the accuracy of the information contained herein. Literature and Media questions or concerns? Contact Marketing Turck USA – media@turck.com

28 subsidiaries and over 60 representations worldwide!

Printed in USA

©2015 by Turck Inc. All rights reserved. No part of the publication may be reproduced without written permission.

MA1019 A 04/17

www.turck.com